
25. 1. 2016 BBXML - An XML Interface for BetaBrite Signs: Users Guide

http://darinfranklin.github.io/bbxml/doc/ 1/17

BBXML User's Guide

Version: 1.3
Author: Darin Franklin

BBXML is an XML interface for controlling the scrolling LED signs made by Adaptive Micro Systems, including the BetaBrite and Alpha
models.

Adaptive provides complete documentation for their Alpha Sign Communication Protocol, which allows the sign to be controlled from a
computer's serial port. The Alpha Sign Protocol offers complete access to all of the sign's features, but it is a rather arcane message format.

The BBXML interface makes this easier, by providing access to all of the commands in the protocol through simple XML messages. BBXML

works with all BetaBrite and Alpha signs that support the Alpha Sign Protocol.

This document contains setup instructions, a usage summary, and a complete command reference.

Download

The package is available at https://github.com/darinfranklin/bbxml.

Required Components

The core component of BBXML is a single XSLT file, alphasign.xsl. That is really all you need from this package. If you have an old sign,

you might need to use bb3to1 or bb3to1.c, as explained later, to postprocess the XSLT output.

To run the examples in this document, you need an XSLT processor that executes from the command line and writes to standard output. For

this purpose, I recommend xsltproc, which is part of the libxslt package.

Some of the example and utility scripts require Perl, but Perl is not required for general usage.

The examples were written for Linux, but Linux is not required. To make this work on your system, you need to know how to configure the
serial port, how to write to the serial port, and how to run an XSLT processor.

Installation

Unpack the bbxml_1.3.tar.gz file into /opt, or any convenient location.

Initial Setup

Wiring

You need to connect the sign to your computer's RS-232 serial port with a properly-wired cable. If your sign didn't come with a cable, you

can purchase one from Adaptive (it's included with their Windows software), or you can make one yourself. See TechMemo 02-0010 on

Adaptive's site for pinouts and wiring details.

If you want to make a cable, I recommend using a modular adapter and silver satin cable. (Those links are just examples; I don't know

anything about that site.) You need to connect the TxD pin (3) on the computer to the RxD pin (3) on the sign, and the RxD pin (2) on the
computer to the TxD pin (4) on the sign. You also need to connect the signal ground pins to each other (pin 5 on the computer to pin 6 on

sign). Make sure that no stray wire ends are touching. The Alpha signs use those "extra" wires for RS-485. If they get shorted, all kinds of bad

things will happen.

Environment Variables

The included scripts assume that the BBXML package is installed at /opt/bbxml, and that the sign is connected to the port at

/dev/betabrite. You can override these values by setting the the BBXML_HOME and BBXML_PORT environment variables. For example:

export BBXML_HOME=/home/darin/opt/bbxml

export BBXML_PORT=/dev/ttyS2

mailto:dfranklin@pobox.com
http://www.ams-i.com/
http://www.betabrite.com/
http://www.adaptivedisplays.com/Pages/a_one.htm
http://www.ams-i.com/Pages/97088061.htm
https://github.com/darinfranklin/bbxml
http://darinfranklin.github.io/bbxml/xml/alphasign.xsl
http://darinfranklin.github.io/bbxml/bin/bb3to1
http://darinfranklin.github.io/bbxml/src/bb3to1.c
http://xmlsoft.org/XSLT/xsltproc.html
http://xmlsoft.org/XSLT/
http://www.adaptivedisplays.com/Pages/alphamsg.htm
http://www.ams-i.com/cgi/wwwthreads/showthreaded.pl?Cat=&Board=UserForum&Number=1053&page=&view=&sb=#Post1053
http://www.ams-i.com/Media/02-0010.pdf
http://www.cablewholesale.com/cgi-bin/search.cgi?text=db9+female+rj12
http://www.cablewholesale.com/cgi-bin/search.cgi?text=RJ12+silver+satin

25. 1. 2016 BBXML - An XML Interface for BetaBrite Signs: Users Guide

http://darinfranklin.github.io/bbxml/doc/ 2/17

You will probably also want to add the bin directory to your PATH

export PATH=$PATH:/opt/bbxml/bin

Serial Port Setup

First, create a symbolic link, named /dev/betabrite, which points to the serial port that your sign is connected to. For example, if your sign

is on /dev/ttyS0, create the link like this.

ln -s /dev/ttyS0 /dev/betabrite

If you do not want to use "/dev/betabrite" as the port name, then you must set the BBXML_PORT environment variable, as described
previously.

Before you can send anything to the sign, you need to configure the serial port to use 9600 baud, 7 bits, even parity, and 1 stop bit. (See
Adaptive's docs for other valid configurations.) Also, disable postprocessing and line ending translation, if necessary. On Linux, use stty to

this:

stty -F /dev/betabrite 9600 -opost -ocrnl -onlcr cs7 parenb -parodd clocal

As a shortcut, you can execute the stty command above by running this command instead:

bbxml --initport

If you are running Windows, then you should be able to find a dialog in Control Panel to change these settings.

Usage Summary

Command Line

Write some commands in a file, commands.xml, and then send it to the sign like this:

bbxml commands.xml

The rest of this section explains the gory details.

How It Works

The alphasign.xsl file contains the all of the rules that the XSLT processor uses to transform your XML document into an Alpha Sign
Protocol message.

This is the basic procedure for sending commands to the sign.

1. Write an XML file with the commands that you want to send.
2. Transform it into an Alpha Sign Protocol message using XSLT.

3. Write the Alpha Sign Protocol message to the serial port.

The bbxml script does steps 2 and 3 for you.

Creating the XML File

Write the commands in a text file. Here is an example, commands.xml:

<alphasign>
 <text label="0">BetaBrite</text>
</alphasign>

Transforming into Alpha Sign Protocol

Use the XSLT processor to transform your XML document with the alphasign.xsl stylesheet.

xsltproc alphasign.xsl commands.xml > commands.txt

The output is the 3-byte flavor of the Alpha Sign Protocol.

http://darinfranklin.github.io/bbxml/xml/alphasign.xsl

25. 1. 2016 BBXML - An XML Interface for BetaBrite Signs: Users Guide

http://darinfranklin.github.io/bbxml/doc/ 3/17

cat commands.txt

_01Z00_02A0BetaBrite_04

Writing to the Sign

To send the commands to the sign, simply cat it to the device file:

cat commands.txt > /dev/betabrite

If all is well, you should see "BetaBrite" scrolling across the sign. If that didn't work, don't worry. Read the next section about the 3-byte
protocol.

3-Byte vs. 1-Byte Protocol

The original version of the Alpha Sign Protocol used ASCII control characters, such as SOH (0x01, '^A'), for commands. This is known as

the 1-byte protocol. Later versions allowed for the commands to be written in printable ASCII characters instead of control codes. The 2-byte

ASCII printable format uses "]" as an escape character, followed by a single character to indicate the command. The 3-byte format uses "_" as
the escape character, followed by a two digit hex value.

The alphasign.xsl transform outputs messages in the 3-byte format. If your sign has an old firmware, such as my BetaBrite 1040 ("1040-

4402a EZII", 1995), it might only be able to read the 1-byte protocol. Here is a simple test to see if your sign can read the 3-byte protocol.

echo "_01Z00_02A0hello_04" > /dev/betabrite

If you see "hello" on your sign, then the 3-byte protocol works for you. If it didn't work, try using the included bb3to1 script to convert the

message to 1-byte format.

echo "_01Z00_02A0hello_04" | bb3to1 > /dev/betabrite

That should work for every sign. If it didn't, check your wiring and port configuration and try again.

Do this to clear the message:

echo "_01Z00_02A0_04" > /dev/betabrite
or

echo "_01Z00_02A0_04" | bb3to1 > /dev/betabrite

More about bb3to1

If you convert the commands.txt file from above with bb3to1, you can see the difference in message format.

bb3to1 commands.txt > commands.1.txt

cat -v commands.1.txt

\0\0\0\0\0̂AZ00̂BAHBetaBritêD

You may be wondering why we don't just output the 1-byte format from XSLT, since all signs understand that format. We can't do that
because the XML 1.0 spec does not allow ASCII control characters (#x00-#x1F), except for TAB, CR, and LF. Therefore, we write the 3-

byte ASCII printable version from XSLT and then convert it with bb3to1, if necessary.

If, for some reason, you can't use Perl, I have included a version of bb3to1 written in C: bb3to1.c. Compile it and then use it in place of the
Perl script.

gcc -o bb3to1 bb3to1.c

XML Command Reference

Alpha Sign Protocol Basics

There are just a few things that you need to know about how the sign works before you can start writing XML commands.

Files

The sign holds data in memory locations called "files". There are three file types: TEXT, STRING, and DOTS. TEXT files hold the messages

that the sign displays. STRING files are like variables that you can include in TEXT files. DOTS files are also like variables, but contain

http://www.w3.org/TR/REC-xml/#charsets
http://darinfranklin.github.io/bbxml/src/bb3to1.c

25. 1. 2016 BBXML - An XML Interface for BetaBrite Signs: Users Guide

http://darinfranklin.github.io/bbxml/doc/ 4/17

graphics instead of characters.

Labels

Each file has a 1-character label. The three file types are kept in separate name spaces, so you can use the same label for a TEXT, a STRING,

and a DOTS file without conflict. Valid file labels are listed in Appendix A of the protocol documentation.

There is one special TEXT file, known as the Priority TEXT file, which has the label, "0". Any message sent with the "0" label will be displayed

immediately and will continue to be displayed until you send a blank message with the "0" label. The "0" file is always allocated 125 bytes, and
the size cannot be changed.

Protocol Formats

The Alpha Sign Protocol has three flavors: 3-byte, 2-byte, and 1-byte. The XML interface outputs the 3-byte format. You can convert 3-byte

format into 2-byte or 1-byte by using the scripts, bb3to2 and bb3to1.

XML Message Structure

The complete BBXML message format is defined in alphasign.dtd.

The root element of every message is alphasign.

<alphasign>
 <!-- commands go here -->
</alphasign>

The alphasign element has two optional attributes: typeCode and signAddress. The typeCode attribute is a 1-character code that
specifies type of sign that you want to communicate with. Refer to the Alpha protocol documentation for the list of Type Code values. If you
omit this attribute, it will default to "Z", the code for "all signs".

The signAddress attribute is the 2-character uppercase hexadecimal address of the sign (00 - FF). If you omit this attribute, it defaults to
"00", which is the only address that BetaBrite signs respond to.

<alphasign typeCode="̂" signAddress="00">
 <!-- commands go here -->
</alphasign>

For BetaBrite, just omit both attributes.

Since this is XML, you have to escape the characters, "&", "<", and ">".

& => &
< => <
> => >

For example, if you want to use typeCode of "&":

<alphasign typeCode="&">
 <!-- commands go here -->
</alphasign>

Command Index

Inside the alphasign element, include one or more of these commands:

memoryConfig
text

string
dots
sequence

dayScheduleTable
timeScheduleTable

timeOfDay
dayOfWeek

beep

softReset
dimmingMode

clearSerialErrorStatusRegister
calendarDate
counterConfig

counterValue
temperatureDisplay

temperatureOffset
signAddress

xyTextMode

http://www.ams-i.com/Pages/97088061.htm
http://darinfranklin.github.io/bbxml/xml/alphasign.dtd
http://www.ams-i.com/Pages/97088061.htm

25. 1. 2016 BBXML - An XML Interface for BetaBrite Signs: Users Guide

http://darinfranklin.github.io/bbxml/doc/ 5/17

speakerMode
timeFormat

"read" commands

<alphasign>
 <text label="0">BetaBrite</text>
</alphasign>

Configuring the Memory

To clear the memory and reset it to the factory default configuration, call memoryConfig without any child elements.

<alphasign>
 <memoryConfig/>
</alphasign>

After the memory has been reset, only the "A" and "0" TEXT files are usable. If you want to use more than that, you have to reserve memory

for the files first. Do that by adding child elements to memoryConfig, either textConfig, stringConfig, or dotsConfig.

<alphasign>
 <memoryConfig>
 <textConfig label="A" size="768"/>
 <textConfig label="D" size="768" start="always" stop="never"/>
 <textConfig label="m" size="512" start="always" stop="never" locked="true"/>
 <stringConfig label="D" size="11"/>
 <stringConfig label="t" size="3"/>
 <dotsConfig label="A" height="7" width="9" colors="8" locked="false"/>
 </memoryConfig>
</alphasign>

This also clears the sign's memory, so you have to configure all files at once. You cannot add new files without wiping out the existing ones.

The label attribute is required for all three file types. It is the 1-character name of the file that you are configuring. You can name a STRING

file, a TEXT file, and a DOTS file all with the same label without conflict.

Text Memory Config

The size attribute specifies how many bytes to reserve for a TEXT file. It is required and must contain an integer value.

The start and stop attributes specify the initial time schedule for the TEXT file. See timeScheduleTable for the list of possible values. These

are optional and default to "always" and "never", respectively.

The locked attribute is optional and defaults to "false". If locked is set to "true", then you will not be able to change the file using the

remote control.

<alphasign>
 <memoryConfig>
 <textConfig label="D" size="768" start="05:00" stop="15:30" locked="true"/>
 </memoryConfig>
</alphasign>

String Memory Config

The size attribute specifies how many bytes to reserve for the STRING file. It is required and must contain an integer value.

<alphasign>
 <memoryConfig>
 <stringConfig label="D" size="11"/>
 </memoryConfig>
</alphasign>

Dots Memory Config

The height and width attributes specify the number of pixels to allocate for the DOTS file. Both attributes are required and must contain

integer values.

The colors attribute sets the color status for the DOTS file. It is optional and defaults to "8". The only valid values are 1, 3, and 8, for
monochrome, 3-color, and 8-color modes, respectively.

The locked attribute is optional and defaults to "false". If locked is set to "true", then you will not be able to change the file using the

25. 1. 2016 BBXML - An XML Interface for BetaBrite Signs: Users Guide

http://darinfranklin.github.io/bbxml/doc/ 6/17

remote control.

<alphasign>
 <memoryConfig>
 <dotsConfig label="A" height="7" width="9" colors="8" locked="false"/>
 </memoryConfig>
</alphasign>

TEXT files

A TEXT file is simply a message that you want to display on the sign. To send a TEXT file, use the text element.

<alphasign>
 <text label="0">The quick brown fox jumps over the lazy dog.</text>
</alphasign>

The required label attribute specifies the 1-character file name.

To clear the contents of a TEXT file, send an empty message.

<alphasign>
 <text label="0"/>
</alphasign>

Breaking up Long Lines

Sometimes it's necessary to break up long lines of text in order to make the XML file more readable. If you do this, you need to ensure that the

extra line breaks are not included in the text that goes to the sign. As a first attempt, you might try something like this:

<alphasign>
 <text label="0">
 The quick brown fox
 jumps over the lazy dog.
 </text>
</alphasign>

Run that through the processor and see what happens.

xsltproc alphasign.xsl dog.xml

_01Z00_02A0
 The quick brown fox
 jumps over the lazy dog.
 _04

That's not quite what you wanted. If you sent that to the sign, you would see a lot of extra spaces in front of "The" and after "fox". To avoid

this, use the msg element to keep the extra spaces from showing up on the sign. The msg element encloses significant text within XML tags.
The XML parser then treats the extra spaces as insignificant whitespace.

<alphasign>
 <text label="0">
 <msg>The quick brown fox </msg>
 <msg>jumps over the lazy dog.</msg>
 </text>
</alphasign>

That's better:

xsltproc alphasign.xsl dog.xml

_01Z00_02A0The quick brown fox jumps over the lazy dog._04

Modes

The text element has an optional mode child element. The display attribute is required, and specifies the display effect. The optional

position attribute indicates the vertical position for multiline signs.

<alphasign>
 <text label="0"><mode display="rollUp"/>BetaBrite<mode display="rollDown"/></text>
</alphasign>

If no mode element is included, the sign defaults to "automode." As shown in the example above, you can include a mode after the text as well.

25. 1. 2016 BBXML - An XML Interface for BetaBrite Signs: Users Guide

http://darinfranklin.github.io/bbxml/doc/ 7/17

The sign uses that effect to clear the display before showing the next message.

Display Effect

Here are the valid values for mode's display attribute. Items in the third column produce animated graphics. Not all signs support all effects.

hold

rotate

flash

scroll

compressedRotate

explode

clock

twinkle

sparkle

snow

interlock

switch

slide

cycleColors

spray

starburst

automode

wipeUp

wipeDown

wipeLeft

wipeRight

wipeIn

wipeOut

rollUp

rollDown

rollLeft

rollRight

rollIn

rollOut

welcome

slotMachine

newsFlash

trumpet

thankYou

noSmoking

drinkAndDrive

runningAnimal

fish

fireworks

turboCar

balloon

cherryBomb

Multiline Position

For multiline signs, you may also specify the vertical position of the text with the optional position attribute. The values for position are:

middle - text is centered vertically

top - text starts on first line of sign

bottom - text starts on the line immediately following the line most recently marked as "top"

fill - text is centered vertically, filling all available lines
left - text begins on the left side of the sign, filling all but 1 line. (Alpha 3.0 protocol only)

right - text begins on the left side of the sign, filling all but 1 line. (Alpha 3.0 protocol only) (Yes, the doc says "text begins on the left".

I suspect they meant "right", but I can't be sure.)

The default value is middle.

<alphasign>
 <text label="0"><mode display="hold" position="top">BetaBrite</text>
</alphasign>

Multiple Modes

You can include multiple modes in a single TEXT file. Simply insert mode elements within the message text, or intersperse mode and msg

elements.

<alphasign>
 <text label="A"><mode display="rollDown"/>One<mode display="rollUp"/>Two<mode display="starburst"/></text>
</alphasign>

<alphasign>
 <text label="A">
 <mode display="rollDown" position="top"/>
 <msg>Top</msg>
 <mode display="starburst" position="top"/>
 <mode display="rollUp" position="bottom"/>
 <msg>Bottom</msg>
 <mode display="rotate" position="bottom"/>
 </text>
</alphasign>

Formatting Codes

TEXT files can contain formatting codes to change the color and style of the text or to insert special characters. Not all codes are supported by
the BetaBrite; some of them work on Alpha signs only. See the Alpha Sign Protocol documentation for details.

http://www.ams-i.com/Pages/97088061.htm

25. 1. 2016 BBXML - An XML Interface for BetaBrite Signs: Users Guide

http://darinfranklin.github.io/bbxml/doc/ 8/17

Colors

red

dimred

orange

brown

yellow

amber

green

dimgreen

rainbow1

rainbow2

colormix

autocolor

When you insert a color code into the message, all of the characters that follow will be in that color. If you don't specify a color, the sign
defaults to autocolor.

<alphasign>
 <text label="0"><green/>The quick <brown/>brown <green/>fox...</text>
</alphasign>

Special Characters and Data

CR - insert line break

FF - insert page break

extendedChar, attribute: offset - insert special character
time - insert time of day

date, attribute: format - insert date

callString, attribute: label - insert STRING file
callDots, attribute: label - insert DOTS file

callLargeDots, attribute: label - insert LARGE DOTS PICTURE file

<alphasign>
 <text label="0">
 <mode display="rotate"/>
 <msg>Date: <date format="MM/DD/YY"/><CR/></msg>
 <msg>Time: <time/><CR/></msg>
 <msg>Temp: <callString label="t"/><extendedChar offset="49"/>F<CR/></msg>
 <msg>Picture: <callDots label="i"/></msg>
 </text>
</alphasign>

Use CR to insert a line break. Use FF to insert a page break (only meaningful for multi-line signs). Use time to insert the current time.

Use extendedChar and its required offset attribute to insert a special character. Refer to Appendix G in the Alpha Sign Protocol

documentation for a list of extended characters and their offset codes. For example, Appendix G says that the control code for the upside-
down question mark is "08H + 48H". Therefore, specify "48" as the offset value: <extendedChar offset="48"/>. The example above

inserts the degree symbol, code "49".

Use date and its required format attribute to insert the current date. (BetaBrite signs don't support date because they don't have an internal
calendar.) The date format attribute must be one of these 10 values.

MM/DD/YY

DD/MM/YY

MM-DD-YY

DD-MM-YY

MM.DD.YY

DD.MM.YY

MM DD YY

DD MM YY

MMM.DD, YYYY

day

Use callString and its required label attribute to insert the contents of a STRING file.

Use callDots and its required label attribute to insert the contents of a DOTS file.

http://www.ams-i.com/Pages/97088061.htm

25. 1. 2016 BBXML - An XML Interface for BetaBrite Signs: Users Guide

http://darinfranklin.github.io/bbxml/doc/ 9/17

The callLargeDots command is not supported in this version.

Speeds

noHold

speed1 (slowest)

speed2 (slower)

speed3 (slow)
speed4 (default)

speed5 (fast)

speedControl, attribute: minutes, seconds or deciseconds

<alphasign>
 <text label="0"><mode display="hold"/><speed5/>The quick brown fox...<noHold/></text>
</alphasign>

The noHold speed causes the individual "pages" of the message to display without pausing. Insert it at the beginning of the message to eliminate

pause that normally occurs.

<alphasign>
 <text label="0"><mode display="hold"/><noHold/><speed5/>The<CR/>quick<CR/>brown<CR/>fox</text>
</alphasign>

The speedControl code only works on certain Alpha signs. Use either the seconds attribute or the deciseconds attribute, depending on

which one your sign supports. See the protocol doc for more details.

<alphasign>
 <text label="0"><mode display="rotate"/><speedControl deciseconds="5"/>zoooooom</text>
</alphasign>

Styles

Like colors, style control codes turn on a particular format. Text that follows a style control code will display in that style, until you change it

with another control code. Not all signs support all styles.

Styles Character Sets

wideModeOn

wideModeOff

doubleHighModeOn

doubleHighModeOff

trueDescendersModeOn

trueDescendersModeOff

fixedWidthModeOn

fixedWidthModeOff

flashModeOn

flashModeOff

wideOn

wideOff

doubleWideOn

doubleWideOff

trueDescendersOn

trueDescendersOff

fixedWidthOn

fixedWidthOff

doubleHighOn

doubleHighOff

fancyOn

fancyOff

shadowOn

shadowOff

standard5

slim5

stroke5

wide5

wideStroke5

custom5

standard7

slim7

stroke7

wide7

custom7

fancy7

slimFancy7

wideFancy7

shadow7

shadowFancy7

strokeFancy7

wideStroke7

wideStrokeFancy7

standard10

custom10

custom15

fullHeightFancy

fullHeightStandard

auxPortOn

auxPortOff

On the BetaBrite, you can combine wideModeOn with fancy7 to achieve a double-wide effect. You can also combine fixedWidthModeOn

25. 1. 2016 BBXML - An XML Interface for BetaBrite Signs: Users Guide

http://darinfranklin.github.io/bbxml/doc/ 10/17

with fancy7 to get an unreadable overlapping effect.

<alphasign>
 <text label="0"><mode display="rotate"/>
 <msg>The </msg>
 <msg><orange/>quick </msg>
 <msg><amber/>brown </msg>
 <msg><dimred/>fox </msg>
 <msg><green/><wideFancy7/>jumps</msg>
 <standard7/><autocolor/>
 <msg> over the </msg>
 <msg><wideModeOn/>L<wideModeOff/><standard5/>azy </msg>
 <standard7/><rainbow3/>
 <msg><wideModeOn/>D<wideModeOff/><standard5/>og</msg>
 </text>
</alphasign>

STRING files

To send a STRING file, use the string element.

<alphasign>
 <string label="D">weasel</string>
</alphasign>

To include the value of a STRING file in a TEXT file, use callString inside the text.

<alphasign>
 <text label="0"><mode display="hold">
 <msg>The quick brown fox </msg>
 <msg>jumps over the lazy <callString label="D"/>.</msg>
 </text>
</alphasign>

The advantage of STRING files is that the sign does not flicker or pause when you send them. STRING files are good for storing small pieces

of information that fit into the bigger template of a TEXT file.

On some signs, you can also include the commands for speeds, character set selection, color selection (excluding rainbow1 and rainbow2),
or any of the following:

CR

time

wideModeOn
wideModeOff

fixedWidthModeOn

fixedWidthModeOff

<alphasign>
 <string label="D"><wideModeOn/>T<wideModeOff/>ime<CR/><time/></string>
</alphasign>

DOTS files

Use the dots element to define arbitrary graphics. Each row element defines one row of pixels (LEDs). Each digit in a row defines the color of

a pixel.

<alphasign>
 <!-- a musical note -->
 <dots label="A">
 <row>000011100</row>
 <row>000010110</row>
 <row>000010011</row>
 <row>000010110</row>
 <row>011010000</row>
 <row>111100000</row>
 <row>011000000</row>
 </dots>
</alphasign>

The colors are defined as follows.

0 - pixel off

25. 1. 2016 BBXML - An XML Interface for BetaBrite Signs: Users Guide

http://darinfranklin.github.io/bbxml/doc/ 11/17

1 - red
2 - green

3 - amber

4 - dim red
5 - dim green

6 - brown

7 - orange

8 - yellow

Like STRING files, DOTS files do not display directly, but must be included inside TEXT files. Insert callDots inside the text message.

<alphasign>
 <text label="0"><mode display="rotate"/>
 <callDots label="A"/>
 <callDots label="A"/>
 <callDots label="A"/>
 <msg>Now Playing: Jumps Over the Lazy Dog (The Quick Brown Fox)</msg>
 </text>
</alphasign>

Remember that you must use memoryConfig to configure the DOTS file size before sending the DOTS file. The DOTS message must exactly

match the height and width that you configured.

Display Sequence

The sequence element defines the order in which TEXT files are to be displayed. Include a list of TEXT file labels.

<alphasign>
 <sequence labels="AbACAdA"/>
</alphasign>

You may also specify two optional attributes, mode and locked. Values for the mode attribute are as follows.

useTimeSchedule - The specified TEXT files will always run according to the configured time schedule. This is the default value.
ignoreTimeSchedule - The specified TEXT files will always run, regardless of each file's time schedule.

deleteAtStopTime - The specified TEXT files will run according to their time schedule, and they will be deleted when the scheduled
stop time is reached.

If mode is not specified, then the files will run according to their time schedule.

The locked attribute may be set to "true" to prevent the files from being edited with the remote control. The default is "false".

<alphasign>
 <sequence labels="AbACAdA" mode="ignoreTimeSchedule" locked="true"/>
</alphasign>

Day Schedule Table

Set the dayScheduleTable when you want certain TEXT files to be displayed only on certain days.

<alphasign>
 <dayScheduleTable>
 <daySchedule label="A" start="never" stop="Monday"/>
 <daySchedule label="b" start="Sunday" stop="Tuesday"/>
 <daySchedule label="C" start="Monday-Friday" stop="Saturday"/>
 <daySchedule label="d" start="always" stop="Monday"/>
 </dayScheduleTable>
</alphasign>

start values stop values

daily

Sunday

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Sunday

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

25. 1. 2016 BBXML - An XML Interface for BetaBrite Signs: Users Guide

http://darinfranklin.github.io/bbxml/doc/ 12/17

Monday-Friday

weekends

always

never

When the start day is daily, Monday-Friday, weekends, always, or never, the stop day is ignored (but it's still required).

Time Schedule Table

Use timeScheduleTable to display certain TEXT files at certain times of the day. The timeSchedule's start and stop values can be set
in 10-minute intervals ("00:00", "00:10", ..., "23:40", "23:50"), plus "all day", "never", and "always".

<alphasign>
 <timeScheduleTable>
 <timeSchedule label="A" start="always" stop="11:30"/>
 <timeSchedule label="b" start="all day" stop="18:00"/>
 <timeSchedule label="C" start="never" stop="00:00"/>
 <timeSchedule label="d" start="08:10" stop="15:50"/>
 </timeScheduleTable>
</alphasign>

When the start time is set to "always", the sign ignores the stop time (but it's still required). I assume that the same is true for "all day" and
"never", but the protocol doc doesn't explicity say.

Time

To set the sign's internal clock, use timeOfDay with its two required attributes, hour and minute. Valid values for hour are "00"-"23", and

values for minute are "00"-"59".

<alphasign>
 <timeOfDay hour="19" minute="55"/>
</alphasign>

Day of Week

If your sign has an internal calendar (BetaBrites don't), you can set the day of week with dayOfWeek.

<alphasign>
 <dayOfWeek day="Monday"/>
</alphasign>

Valid values for the required day attribute:

Sunday

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Set Speaker Mode

To enable or disable the sign's speaker, use speakerMode with the enabled attribute set to "true" or "false".

<alphasign>
 <speakerMode enabled="true"/>
</alphasign>

Set Time Format

Set the time format using the timeFormat element. Set the required format attribute to either "am-pm" or "24-hour".

<alphasign>
 <timeFormat format="24-hour"/>
</alphasign>

25. 1. 2016 BBXML - An XML Interface for BetaBrite Signs: Users Guide

http://darinfranklin.github.io/bbxml/doc/ 13/17

This controls the way the time value is displayed.

Soft Reset

Send softReset to reboot the sign. This is non-destructive; memory will not be cleared.

<alphasign>
 <softReset/>
</alphasign>

Beep

To sound the beeper, use the beep element.

<alphasign>
 <beep/>
</alphasign>

The type attribute must be set to "on", "off", "long", or "short".

<alphasign>
 <beep type="long"/>
</alphasign>

Please note that "on" and "off" should not be used with signs that have standard speaker/piezo alarms, as it may cause damage to the sign.
There is a warning about this in the Alpha Sign Protocol documentation.

On some signs (not Betabrite), you can use frequency, duration, and repeat attributes instead of the type attribute.

<alphasign>
 <beep frequency="120" duration="15" repeat="4"/>
</alphasign>

Valid values:

frequency - 0-254
duration - 1-15 (deciseconds)
repeat - 0-15

Set Dimming Mode

If your sign supports it, you can set the dimming mode with the dimmingMode element and one of two alternative pairs of attributes.

Form one, for Alpha Solar signs:

<alphasign>
 <dimmingMode threshold="19" level="3"/>
</alphasign>

Valid attribute values:

threshold: 0-21, where 0 means no dimming, 1 means darkest outside, and 21 means brightest outside
level: 0-4, where 0 is 100% brightness and 4 is 44% brightness

Form two, for Big Dot signs:

<alphasign>
 <dimmingMode start="20:30" stop="06:00"/>
</alphasign>

Valid start and stop time values are the same as for timeScheduleTable.

Clear Serial Error Status Register

Send clearSerialErrorStatusRegister to clear the serial error status register. See the Alpha Sign Protocol documentation for an

explanation.

<alphasign>

http://www.ams-i.com/Pages/97088061.htm
http://www.ams-i.com/Pages/97088061.htm

25. 1. 2016 BBXML - An XML Interface for BetaBrite Signs: Users Guide

http://darinfranklin.github.io/bbxml/doc/ 14/17

 <clearSerialErrorStatusRegister/>
</alphasign>

Set Calendar Date

Send calendarDate to set the calendar date, if your sign supports it.

<alphasign>
 <calendarDate month="02" day="04" year="06"/>
</alphasign>

Configure Counters

Counters are a feature of Alpha signs. Betabrite signs do not support counters. A counter is a value stored inside the sign that can be
incremented automatically once every minute, hour, or day. When a counter reaches its target value, it can trigger the display of a TEXT file.
The value of the counter can be displayed in a text message. See counterValue.

The counterConfig element allows you to configure the sign's built-in counters. It contains one or more counter child elements. Each of
these configures a specific counter. Alpha signs have 5 counters, numbered 1-5.

The counter element has one attribute, id, which identifies the counter. This is a 1-digit number, 1-5. It also has 3 child elements:

counterOptions, counterValues, and counterSchedule, which specify the configuration parameters.

The counterOptions element specifies three attributes:

enabled: (true | false) enabled or disables the counter

eventToCount: (minutes | hours | days) If set to minutes, the counter will increment whenever the clock minute changes. If set to
hours, it will increment whenever the hour changes. If days, it will increment at midnight, when the day changes.
autoReset: (true | false) If true, the counter will reset to its start value after it reaches its target value. If false, it will stay at its target

value.

The counterValues element specifies four attributes, all integers.

start: (0 - 99) The starting value of the counter. If autoReset is enabled, this is the value that the counter will reset to.

increment: (-99 - 99) The increment value. Whenever a new eventToCount occurs, the counter will be incremented by this amount.
This value can be negative, producing a countdown.
current: (0 - 99) The current value.

target: (0 - 99) The target value. When the counter reaches the target value, it will turn on the TEXT file with a label equal to the
counter's id attribute. That is, counter 1 will call text 1, counter 2 will call text 2, etc.

The counterSchedule element specifies three attributes.

start: This is a time value which specifies the starting time for the counter. Legal values are the same as for timeScheduleTable.
stop: This is another time value which specifies the stopping time for the counter. Legal values are the same as for timeScheduleTable.

weekends: (true | false) If true, the counter will continue counting events on Saturday and Sunday. If false, it will only count on
Monday-Friday.

<alphasign>
 <counterConfig>
 <counter id="1">
 <counterOptions enabled="true" eventToCount="minutes" autoReset="true"/>
 <counterValues start="1" increment="1" current="1" target="4"/>
 <counterSchedule start="00:00" stop="12:00" weekends="true"/>
 </counter>
 <counter id="2">
 <counterOptions enabled="false" eventToCount="days" autoReset="false"/>
 <counterValues start="1" increment="1" current="1" target="5"/>
 <counterSchedule start="00:00" stop="never" weekends="true"/>
 </counter>
 </counterConfig>
</alphasign>

Counter Value

The counter value can be retrieved with counterValue and its id attribute.

<alphasign>
 <text label="0">count: <counterValue id="0"/></text>

25. 1. 2016 BBXML - An XML Interface for BetaBrite Signs: Users Guide

http://darinfranklin.github.io/bbxml/doc/ 15/17

</alphasign>

Set Temperature Display Units

The temperatureDisplay element has one attribute, units, which specifies "F" or "C" as the display units.

<alphasign>
 <temperatureDisplay units="F"/>
</alphasign>

Set Temperature Offset Amount

The temperatureOffset element specifies a correction amount to add to the reading of the sign's internal thermometer. For all Alpha signs
except Solar, the amount is sent in the offset attribute. This value is a single digit integer, positive or negative, -9 - 9. For Solar signs, send
the actual temperature in the temperature attribute, and the sign will compute the offset. (It is unclear from the documentation what units to

use; unless someone tells me otherwise, I assume that it is in the units specifed by temperatureDisplay configuration.)

<alphasign>
 <temperatureOffset offset="-5"/>
</alphasign>

For Alpha Solar signs:

<alphasign>
 <temperatureOffset temperature="73"/>
</alphasign>

Set Serial Address

The signAddress element changes the sign's serial address. This is the same address that you must use in the alphasign element's
signAddress attribute. It is a 2 character uppercase hex value, 00 - FF.

<alphasign>
 <signAddress address="01"/>
</alphasign>

Display Text at XY Position

The xyTextMode element enables or disables the XY positioning mode. The child element, xyText, with its two required attributes, x and y,

set text at an XY position. To use XY positioning, you must first enable it with an empty xyTextMode element. Then, you can send one or
more xyTextMode commands with xyText child elements. Finally, you must turn off XY positioning by sending xyTextMode again, with the
enabled="false" attribute.

While in XY mode, the sign will ignore all other control codes, except for color selection and the 5-high or 7-high character codes.

<alphasign>
 <!-- first, enable XY mode -->
 <xyTextMode/>
 <!-- next, send XY text -->
 <xyTextMode>
 <xyText x="1" y="2">Hello world!</xyText>
 <xyText x="2" y="4"><standard5/>What's <standard7/>up<standard5/>, doc?</xyText>
 <xyText x="3" y="10"><colormix/>Goodbye <red/>world!</xyText>
 </xyTextMode>
 <!-- finally, disable XY mode -->
 <xyTextMode enabled="false"/>
</alphasign>

Read Commands

Although many of the "read" commands are included, BBXML has no provision for actually reading the data from the serial port or converting
it into XML. These commands only send the instruction that makes the sign return the data. Consult the Alpha Sign Protocol documentation for

information about the message format of the returned data.

The following "read" commands are supported.

readText label="label"

readString label="label"

25. 1. 2016 BBXML - An XML Interface for BetaBrite Signs: Users Guide

http://darinfranklin.github.io/bbxml/doc/ 16/17

readDots label="label"

readLargeDots label="label"

readRGBDots label="label"

readTimeOfDay

readSpeakerMode

readGeneralInfo

readMemoryPoolSize

readMemoryConfig

readMemoryDump

readDayOfWeek

readTimeFormat

readTimeScheduleTable

readSerialErrorStatusRegister

readNetworkQuery

readSequence

readDayScheduleTable

readCounters

readAlphavisionDOTSMemoryConfig

readRunFileTimes

readDate

readDaylightSavingTime

readAutoModeTable

readTemperatureOffset

<alphasign>
 <readText label="B"/>
</alphasign>

<alphasign>
 <readString label="s"/>
</alphasign>

<alphasign>
 <readTimeOfDay/>
</alphasign>

Sending Several Commands at Once

You can combine several commands into a single message, as long as you keep them in a sequence that the sign can handle. The messages are
processed by the sign in the order that they are received -- that is, in the order that you write them. Certain combinations don't work together.

In particular, you have to send the beep command last, because the sign's serial port is disabled while its beeper is beeping.

<alphasign>
 <string label="d">Sunday, August 1</string>
 <text label="A"><mode display="hold"/><rainbow1/>BetaBrite<red/>!!!</text>
 <text label="D"><mode display="compressedRotate"/><callString label="d"/></text>
 <text label="T"><mode display="wipeUp"/><orange/><cs7HighFancy/><time/></text>
 <timeScheduleTable>
 <timeSchedule label="A" start="Always" stop="00:00"/>
 <timeSchedule label="T" start="Always" stop="00:00"/>
 <timeSchedule label="D" start="06:00" stop="11:00"/>
 <timeSchedule label="m" start="Always" stop="00:00"/>
 </timeScheduleTable>
 <sequence labels="ADTD"/>
 <speakerMode enabled="true"/>
 <beep type="short"/>
</alphasign>

There is one more restriction to keep in mind. The size of the entire message must be less than the amount of free memory in the sign. If you do
not have much free memory left, you may have to send each command separately. This is especially true if you are sending several big DOTS
files.

Example Application

Once you learn to use XML and XSLT, it becomes very easy to put information on your sign. Consider an application that reads CallerID
data from a modem and outputs it as XML. We can use XSLT to transform the CallerID XML into a BBXML message.

25. 1. 2016 BBXML - An XML Interface for BetaBrite Signs: Users Guide

http://darinfranklin.github.io/bbxml/doc/ 17/17

Here is our callerID.xml file:

<callerID>
 <date>0429</date>
 <time>0050</time>
 <nmbr>8885551212</nmbr>
 <name>FRED BLOGGS</name>
 <mesg/>
</callerID>

Here is the bbCallerID.xsl file:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.1">
 <xsl:output indent="yes"/>
 <xsl:template match="text()|@*"/> <!-- suppress default output -->

 <xsl:template match="callerID">
 <xsl:element name="alphasign">
 <xsl:element name="text">
 <xsl:attribute name="label">0</xsl:attribute>
 <xsl:attribute name="mode">rollUp</xsl:attribute>
 <xsl:element name="green"/>
 <xsl:apply-templates select="name"/>
 <xsl:element name="CR"/>
 <xsl:apply-templates select="nmbr"/>
 </xsl:element>
 </xsl:element>
 </xsl:template>

 <xsl:template match="callerID/nmbr">
 <xsl:value-of select="."/>
 </xsl:template>

 <xsl:template match="callerID/name">
 <xsl:value-of select="."/>
 </xsl:template>

</xsl:stylesheet>

Running that through xsltproc, we get this output.

xsltproc bbCallerId.xsl callerID.xml

<alphasign>
 <text label="0"><mode display="rollUp"/><green/>FRED BLOGGS<CR/>8885551212</text>
</alphasign>

You can use the XSLT substring() function to format the phone number with hyphens. You might also want to handle the special nmbr
values, 'P' and 'O', to print "Private" and "Out of Area", respectively. This is left as an exercise for the reader.

Send it straight to the sign like this:

xsltproc bbCallerId.xsl callerID.xml | bbxml

Unsupported Features

"LARGE DOTS PICTURE" file, a feature of certain large Alpha signs, is not supported.

Although many of the advanced Alpha sign features are included, I have not tested this with anything but my Betabrite 1040 and Alpha 215
signs. Let me know if you have any problems.

License

Copyright 2005 Darin Franklin. BBXML is released under version 2 of the GNU General Public License.

[up]
Darin Franklin

http://www.topxml.com/xsl/funcsubstring.asp
http://www.gnu.org/licenses/gpl-2.0.html
http://darinfranklin.github.io/bbxml/
mailto:dfranklin@pobox.com

